

Heterogeneous Laxity-based Improved Task

Scheduling for DAG-based Heterogeneous Computing

Rashmi Basavaraddi1 and Arshiya Sultana2
1rashmihb123@gmail.com

2arshiyasltn@gmail.com

Abstract—In heterogeneous computing taskmapping is necessary and has drawn major
attention. Task scheduling algorithms at present are less efficient. This generally consists of
two phases where first is pritorization and second is task assigning. In this paper a
Heterogeneous laxity based improved task scheduling algorithm is proposed. This method
of scheduling is represented by directed acyclic graph (DAG). This combines the method
Heterogeneous Laxity Based Scheduling (HLBS) and Heterogeneous Scheduling with
Improved Task Priority (HSIP) to improve the task scheduling efficiency. Here in this paper
we come across with m-processers and n-tasks and we are concentrating on ideal time slot of
any m-processers to schedule any n-tasks with shorter laxity and execution time to complete
the task. To address the performance issue we are considering three parameters like
makespan, Scheduling Length Ratio (SLR) and failure ratio.

Index Terms— Directed Acyclic Graph (DAG), HLBS, HSIP, Makespan, SLR and Failure
Ratio.

I. INTRODUCTION

The availability of a network of processors makes a cost effective utilization of underlying parallelism for
application like weather modeling, image processing, real-time and distributed database systems. A well
recognized strategy in efficient execution of a huge application on a heterogeneous computing environment is
that partition it into numerous independent tasks and plan such tasks over a set of available processors.
The task ranking algorithm divide the task into more number of tasks and an abstract replica of such a
partitioned application can be represented using the graph. Each task in the DAG corresponds to a chain of
operation and the directed edge represents the rank constraints between the tasks. Each task will be executed
on a processor and in the directed edge shows transfer of relevant data from one processor to other. Task
scheduling can be performed at compile instance or at run time. This includes execution times of tasks on
unlike processors, the data size of the communication between the tasks and the task dependencies are known
apriori. The objective of task scheduling is to map the tasks on the processors and order their execution so
that task rank requirements are satisfied and a minimum overall completion time is obtained. Power
performance optimization includes minimizing the present efficiency gap in processing throughput and
power utilization. Power efficiency, a fresh focus for common purpose computing, has been a important
technology driver in the application of phone and embedded areas for few time.
Different methods are done for optimizing the solution for task scheduling difficulty. The tasks are scheduled

Grenze ID: 01.GIJCTE.3.4.36
© Grenze Scientific Society, 2017

Grenze International Journal of Computer Theory and Engineering , Special issue

242

in order to lessen the idle time on the machines and communication overhead. The scheduling of a DAG on
the topological network not only involves the mapping of task nodes on the processor but also includes the
mapping of the edges on the links of the network. When all the inputs are accessible, that is when the parent
nodes have successfully executed, only then the task is executed. Each node has its own associated
computation rate that designates the execution time of every node on the processor. In the case of
homogeneous processor, the price is the similar for every kind of processor.

II. RELATED WORK

The methods on the list scheduling are used in graph to assign the ranks to tasks and for listing these tasks
according to priorities in a downward order. The task of high rank is given preference over the one having
low priority by the aid of priority policy. A task can be assigned to any of the processors meanwhile a ready
list is maintained for assigning the priorities.
Prof. Guoqi Xie et.al [1] proposed a fully heterogeneous task scheduling algorithm to address the above
problems. The fundamentals of DAG model and corresponding algorithms are investigated. New concepts
called Heterogeneous Upward Rank Value (HURV) and Heterogeneous Priority Rank Value are defined. An
algorithm called Heterogeneous Select Value is proposed in paper. Both benchmark and extensive
experimental evaluation demonstrate the significant improvements in proposed algorithm.
Mehdi Akbari et. al [2] proposed a task scheduling algorithm on heterogeneous computing systems using
Efficient State Space Search Genetic Algorithm (ESSSGA). The basic idea of this approach is to exploit the
advantages of heuristic-based algorithms to reduce space search and the time needed to find good solutions.
The proposed algorithm uses a novel list scheduling heuristic-based algorithm while using a heuristic-based
earliest finish time approach to search for a solution for the task-to-processor mapping. Here the results gives
that makespan is better achieved.
 Guan Wang, and Yuxin Wang [3] Heterogeneous Scheduling with Improved Task Priority (HSIP). Here the
algorithm has two phases: a task prioritizing stage and it is to calculate task priorities and a processor
selection stage for choosing the best processor to execute the current task. In this task duplication selection
policy is used and it will consume memory.
Yuhei Suzuki and Takuya Azumi [4] presented the HLBS Algorithm, HLBS computes the rest time until
deadlines, known as laxity, and preferentially assign a task with shorter laxity to the processor. This enables
scheduling of multiple deadlines to reduce deadline miss rate. But makespan is higher in HLBS when
compared to other algorithms hence in our paper using HLBS and HSIP Algorithm we reduced the
makespan.

III. METHODOLOGY

In heterogeneous computing, task scheduling is major issue as different kinds of processors are used.
Different kinds of techniques though were introduced but still efficient use of resources and time complexity
still remains as it is and deadlines are missed many times. So there is need of efficient of scheduling
algorithm that improves idle slot and reduces the deadline and time complexity. The overall proposed
architecture of the model is as shown in Figure 1.
The method of scheduling is represented by DAG.A DAG is a directed graph that has no cycles. It is formed
by a collection of vertices and edges, where the vertices are structure-less objects that are connected in pairs
by edges. In the case of a directed graph, every edge has an orientation, from 1 vertex to another vertex.
A path in a directed graph can be describe by a series of edges having the property that the ending vertex of
every edge in the series is the same as the starting vertex of the next edge in the sequence; a path forms a
cycle if the starting vertex of its first edge equals the ending vertex of its last edge.
We identify the execution time for particular task for each m-Processor and based on the criteria such as (1)
Execution time (2) Computation Time and (3) Laxity scheduling work has taken place.
Here in this paper we are combining both the HLBS (Heterogeneous Laxity-Based Scheduling) and HSIP
(Heterogeneous Scheduling with Improved Task Priority) algorithms. There are two phases to integrate both
the algorithm: I. Task Prioritization. II. Task Assignment.
We now introduce the graph attributes used for ranking the task priorities. An application is represented by a
DAG, ܩ = ௜௣ represents theݓ ,is the set of ݁ edges between tasks ܧ ,where ܸ is the set of ݊ tasks ,(ܧ,ܸ)

243

weight of task ݊௜ on processor p, which is the execution cost of task ௜݊ , ܿ௜௝ represents the communication
delay from task ௜݊ to task ௝݊ ,
௜ represents the deadline attributed to end nodeܦ ௜݊ , and ݓ௜ and ܿ௜̅௝ represent the average of the wi and cij
dependent processors, respectively.

A. Task Prioritization
The scheduler gives a priority level to each task as pre-processing. Tasks are given priority 	prio୦ୣ୤୲(T୧)
which is recursively defined by

௛௘௙௧(T௜)݋݅ݎ݌ = +݌ഥ௜ݓ	 max୘ೕ∈௦௨௖௖(୘೔)(݇݊ܽݎ൫T௝൯ + ܿ௜௝). (1)

A set of immediate successors to node vi is given by succ(n୧). prio୦ୣ୤୲is computed recursively by traversing
the task graph from end to entry node. The tasks are assigned a priority in ascending order ofprio୦ୣ୤୲. As
shown in Equation 1, the HEFT algorithm computes the priority as the sum of the execution and
communication times through a path. If the task n୧ corresponds to an end node, prio୦ୣ୤୲ is equal to

																																																																						rank୦ୣ୤୲(T୧) = wనpതതതതത. (2)

B. Task Assignment
In the processor selection stage, according to the priority of task scheduling order, tasks are assigned to the
lesser EFT processor to be executed. On the basis of the above strategy, we proposed two innovative policies,
entry task duplication selection policy and idle time slots (ITS) insertion-based optimizing policy. They
improve the efficiency of scheduling algorithm.
The allocation of tasks to a processor is performed using EST (earliest execution start time) and EFT (earliest
execution finish time). EST(n୧, H୮), given by Equation 3, is an available time to start an execution of the task
n୧ on processor H୮ and EFT(T୧ , H୮), given by Equation 4, is the time to completion of task execution.
available൫H୮൯is the earliest time at which processor H୮ is ready for task execution. The set of immediate
predecessor tasks of task n୧is represented by	pred(n୧).

Figure 1: Block Diagram of Proposed System

244

Start

Calculate the Execution
time, Laxity

For Each Task

Identify task with minimum
EFT and Laxity

Assign Higher Priority to the
Task having Minimum Laxity

Stop

Figure 2: Flow Chart of task Prioritization

EFT൫T୧, H୮൯ = max	(available൫H୮൯

max
୬ౠ∈୮୰ୣୢ(୬౟)

(EFT(n୨, host൫T୨൯) + c୧୨))														(3)

EFT൫n୧, H୮൯ = w୧p + EST൫n୧, H୮൯																		(4)

Figure 5 shows the scheduling results from Figure 4 using HEFT algorithm, where the execution and
communication costs are taken from Table I. The vertical axis shows the processor, and the horizontal axis
shows time. The scheduling order of the tasks with respect to the HEFT algorithms is [T0, T4, T5, T1, T8,
T11, T9, T12, T2, T6, T14, T3, T20, T15, T7, T18, T16, T19, T13, T17, and T10]. As seen from Figure 2[a],
all end nodes are concentrated near the finish time of all tasks and task T13 fails to meet the deadline of 144.
In HEFT, a deadline miss usually occurs because an end node via few nodes does not preferentially execute.
The main measure of the performance of an algorithm is makespan, which is given by Formula 5:

makespan = max	(AFT൫H୮, nୣ୬ୢ൯) (5)

The execution finish time of a task that is assigned at the end of each processor is known as the AFT (actual
execution finishes time) and is given as	AFT൫H୮, nୣ୬ୢ൯. Representing the processor as H୮and the last of the
tasks that are assigned to the processor H୮ as n୧makespan derives the finish time of the system.

Figure 4: Scheduling results of Figure 4 with HEFT and HLBS algorithm

245

Start

Calculate the Execution
Time (ET)

For Each Task

Check for the Processor
Idle Time Slot (ITS)

Assign the Task to the
Processor

Stop

For Each Processor

Choose the Processor with
Minimum Execution Time

(MET)

If
Processor is

Busy ?

If ET < ITS

Check for Other Processor
having available with next
Minimum Execution Time

Figure 3: Flow Chart of Selection of Process

In HLBS, the priority given to task ݒ௜ represents laxity and corresponds to the shortest time until the
deadline, ݈ܽݕݐ݅ݔ(ݒ௜), given by Equations 6 and 7.

 If ݒ௜ corresponds to the end node:
(௜ݒ)ݕݐ݅ݔ݈ܽ = ௜ܦ തതതതത (6)݌పݓ−

 If ݒ௜does not correspond to the end node:

laxity(v୧) = min୴ౠ∈ୱ୳ୡୡ(୴౟)(laxity൫v୨൯ − cన఩)തതതത − wనതതതp				(7)

Figure 5: DAG Input Graph

Laxity is recursively computed by traversing the task graph from end node to entry node. The tasks are
assigned high priority in ascending order of laxity. It means that the task could not afford the deadline has
been preferentially assigned by the processor. This ranking algorithm addressed Richard’s Anomalies which
is a problem for fixed priority to increase makespan when increasing the number of processors.

246

IV. RESULT

In this section, we present a comparative evaluation of our algorithms and those of previous work using a
randomly generating DAG tool.

TABLE I: PARAMETER OF EACH NODE

Task
No.

Execution
Cost P1

Execution
Cost P2

Execution
Cost P3

Communication
Cost

T1 26 24 17 20
T2 19 12 9 2
T3 11 8 23 26
T4 16 13 6 29
T5 13 3 21 21
T6 3 4 6 23
T7 8 29 12 23
T8 4 29 19 12
T9 6 18 24 20

T10 8 2 3 6
T11 13 8 28 22
T12 2 11 24 1
T13 28 25 15 9
T14 29 1 14 2
T15 15 2 14 3
T16 15 6 10 25
T17 11 20 16 21
T18 28 22 16 10
T19 12 20 25 29
T20 4 14 24 2

Figure 6: Comparison of Makespan Figure 7: Comparison of SLR

Comparison with previous work as shown in Figure 6, the average makespan value of HLBS and HLBS
HSIP combined. This difference is equivalent to one task. As the time for each of the number of tasks
increased, the difference in the makespan value become larger because tasks on the critical path are not
necessarily given a high priority in HLBS, as the main purpose is to ensure that deadline constraints are met.
Scheduling Length Ratio (SLR): SLR normalizes the scheduling length (makespan) to a lower bound. The
task scheduling algorithm that gives the lowest SLR is considered the bestperformance algorithm. SLR is
defined as the ratio of makespan to the sum of the computation time on the critical path (CP) and is
calculated.

SLR = ୫ୟ୩ୣୱ୮ୟ୬
∑ ∈౬౟ େ୔౉౅ొ୫୧୬౦ౠ∈୕{୵౟}

 (8)

Average SLR values over several task graphs were used in our experiments.

Failure ratio (FR): We evaluated the performance in terms of a Failure ratio, defined as the ratio of the
number of unschedulable task sets to the total number of task sets attempted. The failure ratio was defined by

247

Figure 8: Comparison of Failure Rate

ܴܨ = 	
ݏݐ݁ݏ	݇ݏܽݐ	݁ݎݑ݈݂݅ܽ	݂݋	ݎܾ݁݉ݑ݊	ℎ݁ݐ

(100)	ݏݐ݁ݏ	݇ݏܽݐ	݈݀݁ݑℎ݁݀ܿݏ	݂݋	ݎܾ݁݉ݑ݊	ℎ݁ݐ

Where the number of failure task sets is the set of tasks including any tasks that fail to meet deadline
constraints on the end nodes.

V. CONCLUSION

In this paper we have proposed HLIS which combination of HLBS and HSIP. This approach helps us in
scheduling task in heterogeneous efficiently. This helps us in executing the task soon, with shorter scheduling
length. The combination of two approaches helps us improve in better way.

REFERENCES

[1] Guoqi Xie, Renfa Li,Xiongren Xiao and Yuekun Chen, “A High-performance DAG Task Scheduling Algorithm for
Heterogeneous Networked Embedded Systems” IEEE, Vol.7, Issue 3, 2014.

[2] Mehdi Akbari and Hassan Rashidi, “An Efficient Algorithm For Compile-Time Task Scheduling Problem On
Heterogeneous Computing Systems”, Vol.7, Issue 1, 2015.

[3] Samia Ijaz, Ehsan Ullah Munir, Waqas Anwar, and Wasi Nasir, “Efficient Scheduling Strategy for Task Graphs in
Heterogeneous Computing Environment”, Vol. 10, Issue 5, 2013.

[4] Sukhjit Singh and Nirmal Kaur, “A Heterogeneous Static Hierarchical Expected Completion Time Based
Scheduling Algorithm in Multiprocessor System”, Vol. 3, Issue 2, 2016.

[5] GuanWang, YuxinWang, Hui Liu, and He Guo, “HSIP: A Novel Task Scheduling Algorithm for Heterogeneous
Computing”, Hindwai, 2016.

[6] Prerit Chawda and Partha Sarathi Chakraborty, “An Improved Min-Min Task Scheduling Algorithm for Load
Balancing in Cloud Computing”, Vol. 4, Issue 4, 2016.

[7] Anum Masood, Ehsan Ullah Munir, M. Mustafa Rafique and Samee U. Khan, “HETS: Heterogeneous Edge and
Task Scheduling Algorithm for Heterogeneous Computing Systems”, Vol.3, Issue 32, 2014.

[8] Weiwei Lin, Wentai Wu, and James Z. Wang, “A Heuristic Task Scheduling Algorithm for Heterogeneous Virtual
Clusters”, Hindawi, 2016.

