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Abstract—In heterogeneous computing taskmapping is necessary and has drawn major 
attention. Task scheduling algorithms at present are less efficient.  This generally consists of 
two phases where first is pritorization and second is task assigning. In this paper a 
Heterogeneous laxity based improved task scheduling algorithm is proposed.  This method 
of scheduling is represented by directed acyclic graph (DAG). This combines the method 
Heterogeneous Laxity Based Scheduling (HLBS) and Heterogeneous Scheduling with 
Improved Task Priority (HSIP) to improve the task scheduling efficiency. Here in this paper 
we come across with m-processers and n-tasks and we are concentrating on ideal time slot of 
any m-processers to schedule any n-tasks with shorter laxity and execution time to complete 
the task. To address the performance issue we are considering three parameters like 
makespan, Scheduling Length Ratio (SLR) and failure ratio.  
 
Index Terms— Directed Acyclic Graph (DAG), HLBS, HSIP, Makespan, SLR and Failure 
Ratio. 

I. INTRODUCTION 

The availability of a network of processors makes a cost effective utilization of underlying parallelism for 
application like weather modeling, image processing, real-time and distributed database systems. A well 
recognized strategy in efficient execution of a huge application on a heterogeneous computing environment is 
that partition it into numerous independent tasks and plan such tasks over a set of available processors.  
The task ranking algorithm divide the task into more number of tasks and an abstract replica of such a 
partitioned application can be represented using the graph. Each task in the DAG corresponds to a chain of 
operation and the directed edge represents the rank constraints between the tasks. Each task will be executed 
on a processor and in the directed edge shows transfer of relevant data from one processor to other. Task 
scheduling can be performed at compile instance or at run time. This includes execution times of tasks on 
unlike processors, the data size of the communication between the tasks and the task dependencies are known 
apriori. The objective of task scheduling is to map the tasks on the processors and order their execution so 
that task rank requirements are satisfied and a minimum overall completion time is obtained. Power 
performance optimization includes minimizing the present efficiency gap in processing throughput and 
power utilization. Power efficiency, a fresh focus for common purpose computing, has been a important 
technology driver in the application of phone and embedded areas for few time.  
Different methods are done for optimizing the solution for task scheduling difficulty. The tasks are scheduled  
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in order to lessen the idle time on the machines and communication overhead. The scheduling of a DAG on 
the topological network not only involves the mapping of task nodes on the processor but also includes the 
mapping of the edges on the links of the network. When all the inputs are accessible, that is when the parent 
nodes have successfully executed, only then the task is executed. Each node has its own associated 
computation rate that designates the execution time of every node on the processor. In the case of 
homogeneous processor, the price is the similar for every kind of processor.  

II. RELATED WORK 

The methods on the list scheduling are used in graph to assign the ranks to tasks and for listing these tasks 
according to priorities in a downward order. The task of high rank is given preference over the one having 
low priority by the aid of priority policy. A task can be assigned to any of the processors meanwhile a ready 
list is maintained for assigning the priorities. 
Prof. Guoqi Xie et.al [1] proposed a fully heterogeneous task scheduling algorithm to address the above 
problems. The fundamentals of DAG model and corresponding algorithms are investigated. New concepts 
called Heterogeneous Upward Rank Value (HURV) and Heterogeneous Priority Rank Value are defined. An 
algorithm called Heterogeneous Select Value is proposed in paper. Both benchmark and extensive 
experimental evaluation demonstrate the significant improvements in proposed algorithm. 
Mehdi Akbari et. al [2] proposed a task scheduling algorithm on heterogeneous computing systems using 
Efficient State Space Search Genetic Algorithm (ESSSGA). The basic idea of this approach is to exploit the 
advantages of heuristic-based algorithms to reduce space search and the time needed to find good solutions. 
The proposed algorithm uses a novel list scheduling heuristic-based algorithm while using a heuristic-based 
earliest finish time approach to search for a solution for the task-to-processor mapping. Here the results gives 
that makespan is better achieved. 
 Guan Wang, and Yuxin Wang [3] Heterogeneous Scheduling with Improved Task Priority (HSIP). Here the 
algorithm has two phases: a task prioritizing stage and it is to calculate task priorities and a processor 
selection stage for choosing the best processor to execute the current task. In this task duplication selection 
policy is used and it will consume memory. 
Yuhei Suzuki and Takuya Azumi [4] presented the HLBS Algorithm, HLBS computes the rest time until 
deadlines, known as laxity, and preferentially assign a task with shorter laxity to the processor. This enables 
scheduling of multiple deadlines to reduce deadline miss rate. But makespan is higher in HLBS when 
compared to other algorithms hence in our paper using HLBS and HSIP Algorithm we reduced the 
makespan. 

III. METHODOLOGY  

In heterogeneous computing, task scheduling is major issue as different kinds of processors are used. 
Different kinds of techniques though were introduced but still efficient use of resources and time complexity 
still remains as it is and deadlines are missed many times. So there is need of efficient of scheduling 
algorithm that improves idle slot and reduces the deadline and time complexity. The overall proposed 
architecture of the model is as shown in Figure 1. 
The method of scheduling is represented by DAG.A DAG is a directed graph that has no cycles. It is formed 
by a collection of vertices and edges, where the vertices are structure-less objects that are connected in pairs 
by edges. In the case of a directed graph, every edge has an orientation, from 1 vertex to another vertex. 
A path in a directed graph can be describe by a series of edges having the property that the ending vertex of 
every edge in the series is the same as the starting vertex of the next edge in the sequence; a path forms a 
cycle if the starting vertex of its first edge equals the ending vertex of its last edge.  
We identify the execution time for particular task for each m-Processor and based on the criteria such as (1) 
Execution time (2) Computation Time and (3) Laxity scheduling work has taken place.  
Here in this paper we are combining both the HLBS (Heterogeneous Laxity-Based Scheduling) and HSIP 
(Heterogeneous Scheduling with Improved Task Priority) algorithms. There are two phases to integrate both 
the algorithm:  I. Task Prioritization. II. Task Assignment. 
We now introduce the graph attributes used for ranking the task priorities. An application is represented by a 
DAG, ܩ =  ௜௣ represents theݓ ,is the set of ݁ edges between tasks ܧ ,where ܸ is the set of ݊ tasks ,(ܧ,ܸ)
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weight of task ݊௜   on processor p, which is the execution cost of task ௜݊ , ܿ௜௝  represents the communication 
delay from task ௜݊  to task ௝݊  ,  
௜ represents the deadline attributed to end nodeܦ ௜݊ , and ݓ௜ and ܿ௜̅௝ represent the average of the wi and cij 
dependent processors, respectively. 

A. Task Prioritization  
The scheduler gives a priority level to each task as pre-processing. Tasks are given priority 	prio୦ୣ୤୲(T୧) 
which is recursively defined by 

௛௘௙௧(T௜)݋݅ݎ݌ = +݌ഥ௜ݓ	 max୘ೕ∈௦௨௖௖(୘೔)(݇݊ܽݎ൫T௝൯ + ܿ௜௝). (1) 
 

A set of immediate successors to node vi is given by succ(n୧). prio୦ୣ୤୲is computed recursively by traversing 
the task graph from end to entry node. The tasks are assigned a priority in ascending order ofprio୦ୣ୤୲. As 
shown in Equation 1, the HEFT algorithm computes the priority as the sum of the execution and 
communication times through a path. If the task n୧ corresponds to an end node, prio୦ୣ୤୲ is equal to 
 
																																																																						rank୦ୣ୤୲(T୧) = wనpതതതതത.   (2) 

B. Task Assignment 
In the processor selection stage, according to the priority of task scheduling order, tasks are assigned to the 
lesser EFT processor to be executed. On the basis of the above strategy, we proposed two innovative policies, 
entry task duplication selection policy and idle time slots (ITS) insertion-based optimizing policy. They 
improve the efficiency of scheduling algorithm. 
The allocation of tasks to a processor is performed using EST (earliest execution start time) and EFT (earliest 
execution finish time). EST(n୧, H୮), given by Equation 3, is an available time to start an execution of the task 
n୧  on processor H୮  and EFT(T୧ , H୮), given by Equation 4, is the time to completion of task execution. 
available൫H୮൯is the earliest time at which processor H୮ is ready for task execution. The set of immediate 
predecessor tasks of task n୧is represented by	pred(n୧).  

 
Figure 1: Block Diagram of Proposed System 
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Figure 2: Flow Chart of task Prioritization 

EFT൫T୧, H୮൯ = max	(available൫H୮൯ 

max
୬ౠ∈୮୰ୣୢ(୬౟)

(EFT(n୨, host൫T୨൯) + c୧୨))														(3) 

EFT൫n୧, H୮൯ = w୧p + EST൫n୧, H୮൯																		(4) 
 
Figure 5 shows the scheduling results from Figure 4 using HEFT algorithm, where the execution and 
communication costs are taken from Table I. The vertical axis shows the processor, and the horizontal axis 
shows time. The scheduling order of the tasks with respect to the HEFT algorithms is [T0, T4, T5, T1, T8, 
T11, T9, T12, T2, T6, T14, T3, T20, T15, T7, T18, T16, T19, T13, T17, and T10]. As seen from Figure 2[a], 
all end nodes are concentrated near the finish time of all tasks and task T13 fails to meet the deadline of 144. 
In HEFT, a deadline miss usually occurs because an end node via few nodes does not preferentially execute. 
The main measure of the performance of an algorithm is makespan, which is given by Formula 5: 
 

makespan = max	(AFT൫H୮, nୣ୬ୢ൯)  (5) 
 

The execution finish time of a task that is assigned at the end of each processor is known as the AFT (actual 
execution finishes time) and is given as	AFT൫H୮, nୣ୬ୢ൯. Representing the processor as H୮and the last of the 
tasks that are assigned to the processor H୮ as n୧makespan derives the finish time of the system. 

 

Figure 4: Scheduling results of Figure 4 with HEFT and HLBS algorithm 
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Figure 3: Flow Chart of Selection of Process 

In HLBS, the priority given to task ݒ௜ represents laxity and corresponds to the shortest time until the 
deadline, ݈ܽݕݐ݅ݔ(ݒ௜),  given by Equations 6 and 7. 

 If ݒ௜ corresponds to the end node: 
(௜ݒ)ݕݐ݅ݔ݈ܽ = ௜ܦ  തതതതത    (6)݌పݓ−

 If ݒ௜does not correspond to the end node: 

laxity(v୧) = min୴ౠ∈ୱ୳ୡୡ(୴౟)(laxity൫v୨൯ − cన఩)തതതത − wనതതതp				(7) 

 

Figure 5: DAG Input Graph 

Laxity is recursively computed by traversing the task graph from end node to entry node. The tasks are 
assigned high priority in ascending order of laxity. It means that the task could not afford the deadline has 
been preferentially assigned by the processor. This ranking algorithm addressed Richard’s Anomalies which 
is a problem for fixed priority to increase makespan when increasing the number of processors. 
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IV. RESULT 

In this section, we present a comparative evaluation of our algorithms and those of previous work using a 
randomly generating DAG tool. 

TABLE I: PARAMETER OF EACH NODE 

Task 
No. 

Execution 
Cost P1 

Execution 
Cost P2 

Execution 
Cost P3 

Communication 
Cost 

T1 26 24 17 20 
T2 19 12 9 2 
T3 11 8 23 26 
T4 16 13 6 29 
T5 13 3 21 21 
T6 3 4 6 23 
T7 8 29 12 23 
T8 4 29 19 12 
T9 6 18 24 20 

T10 8 2 3 6 
T11 13 8 28 22 
T12 2 11 24 1 
T13 28 25 15 9 
T14 29 1 14 2 
T15 15 2 14 3 
T16 15 6 10 25 
T17 11 20 16 21 
T18 28 22 16 10 
T19 12 20 25 29 
T20 4 14 24 2 

 

Figure 6: Comparison of Makespan                                                     Figure 7: Comparison of SLR 

Comparison with previous work as shown in Figure 6, the average makespan value of HLBS and HLBS 
HSIP combined. This difference is equivalent to one task. As the time for each of the number of tasks 
increased, the difference in the makespan value become larger because tasks on the critical path are not 
necessarily given a high priority in HLBS, as the main purpose is to ensure that deadline constraints are met. 
Scheduling Length Ratio (SLR): SLR normalizes the scheduling length (makespan) to a lower bound. The 
task scheduling algorithm that gives the lowest SLR is considered the bestperformance algorithm. SLR is 
defined as the ratio of makespan to the sum of the computation time on the critical path (CP) and is 
calculated. 

SLR = ୫ୟ୩ୣୱ୮ୟ୬
∑ ∈౬౟ େ୔౉౅ొ୫୧୬౦ౠ∈୕{୵౟}

   (8) 

Average SLR values over several task graphs were used in our experiments. 

Failure ratio (FR): We evaluated the performance in terms of a Failure ratio, defined as the ratio of the 
number of unschedulable task sets to the total number of task sets attempted. The failure ratio was defined by 
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Figure 8: Comparison of Failure Rate 

ܴܨ = 	
ݏݐ݁ݏ	݇ݏܽݐ	݁ݎݑ݈݂݅ܽ	݂݋	ݎܾ݁݉ݑ݊	ℎ݁ݐ

(100)	ݏݐ݁ݏ	݇ݏܽݐ	݈݀݁ݑℎ݁݀ܿݏ	݂݋	ݎܾ݁݉ݑ݊	ℎ݁ݐ
 

Where the number of failure task sets is the set of tasks including any tasks that fail to meet deadline 
constraints on the end nodes. 

V. CONCLUSION  

In this paper we have proposed HLIS which combination of HLBS and HSIP. This approach helps us in 
scheduling task in heterogeneous efficiently. This helps us in executing the task soon, with shorter scheduling 
length. The combination of two approaches helps us improve in better way. 
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